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simple harmonic motion: periodic motion and simple harmonic motion 
 

Simple Harmonic Motion 
(Periodic Motion and Simple Harmonic motion) 

 

A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special 

kind of oscillatory motion called Simple Harmonic Motion (SHM).   

 

SHM occurs whenever: 

i. there is a restoring force proportional to the displacement from equilibrium: F  −x 

ii. the potential energy is proportional to the square of the displacement: PE  x2 

iii. the period T or frequency f = 1 / T is independent of the amplitude of the motion. 

iv. the position x, the velocity v, and the acceleration a are all sinusoidal in time. 

 
(Sinusoidal means sine, cosine, or anything in between.) 

As we will see, any one of these four properties guarantees the other three.  If one of 

these 4 things is true, then the oscillator is a simple harmonic oscillator and all 4 things 

must be true. 

 

Not every kind of oscillation is SHM.  For instance, a perfectly elastic ball bouncing up 

and down on a floor: the ball's position (height) is oscillating up and down, but none of 

the 4 conditions above is satisfied, so this is not an example of SHM.   

 

A mass on a spring is the simplest kind of Simple Harmonic Oscillator. 

 

 

Hooke's Law:  Fspring = – k x 

 

(–) sign because direction of Fspring is 

opposite to the direction of displacement 

vector x  (bold font indicates vector) 

  

k = spring constant = stiffness, 

units [k] = N / m 

 

Big k = stiff spring 

 

 

Definition: amplitude A  =  |xmax|  =  |xmin|.  

x 
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simple harmonic motion: periodic motion and simple harmonic motion 
 

Mass oscillates between extreme positions x = +A and x = –A   

Notice that Hooke's Law (F = − kx) is condition  i : restoring force proportional to the 

displacement from equilibrium. We showed previously (Work and Energy Chapter) that  

for a spring obeying Hooke's Law, the potential energy is U  = (1/2)kx2 , which is 

condition ii.  Also, in the chapter on Conservation of Energy, we showed that F = 

−dU/dx, from which it follows that condition ii implies condition i.  Thus, Hooke's Law 

and quadratic PE (U  x2) are equivalent. 

 

We now show that Hooke's Law guarantees conditions iii (period independent of 

amplitude) and iv (sinusoidal motion).   

 

We begin by deriving the differential equation for SHM.  A differential equation is 

simply an equation containing a derivative.  Since the motion is 1D, we can drop the 

vector arrows and use sign to indicate direction. 

 

net net

2
2 2

2

F ma and F k x ma k x

d x k
a dv / dt d x / dt x

d t m

= = −  = −

= =  = −  

The constants k and m and both positive, so the k/m is always positive, always.  For 

notational convenience, we write 2k / m =  .  (The square on the  reminds us that 2 is 

always positive.)  The differential equation becomes 
2

2

2

d x
x

d t
= −    (equation of SHM) 

This is the differential equation for SHM.  We seek a solution x = x(t) to this equation, a 

function x = x(t) whose second time derivative is the function x(t) multiplied by a 

negative constant (−2 = −k/m).  The way you solve differential equations is the same 

way you solve integrals: you guess the solution and then check that the solution works. 

 

Based on observation, we guess a sinusoidal solution:  ( )x(t) A cos t=  +  , 

where A,  are any constants and (as we'll show)  
k

m
 = . 

A = amplitude:  x oscillates between +A and –A 

 = phase constant (more on this later) 

Danger:  t and  have units of radians (not degrees).  So set your calculators to radians 

when using this formula.   

 

Just as with circular motion, the angular frequency  for SHM is related to the period by  
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simple harmonic motion: periodic motion and simple harmonic motion 
2

2 f
T


 =  =    ,  T = period.   

(What does SHM have to do with circular motion?  We'll see later.) 

 

Let's check that ( )x(t) A cos t=  +   is a solution of the SHM equation. 

 

Taking the first derivative dx/dt , we get ( )
dx

v(t) A sin t
dt

= = −   +  .    

Here, we've used the Chain Rule: 
( )

d d cos( ) d
cos t , ( t )

dt d d t

sin sin( t )

 
 +  =  =  + 



= −  = −   + 

 

 

Taking a second derivative, we get  

 

( )( )

 

2
2

2

2
2

2

2
2

2

d x dv d
a(t) A sin t A cos( t )

dt dt dt

d x
A cos( t )

dt

d x
x

dt

= = = −   +  = −   + 

= −   + 

= − 

 

 

This is the SHM equation, with 
2 k k

,
m m

 =  =   

 

We have shown that our assumed solution is indeed a solution of the SHM equation.  (I 

leave to the mathematicians to show that this solution is unique. Physicists seldom worry 

about that kind of thing, since we know that nature usually provides only one solution for 

physical systems, such as masses on springs.)    

 

We have also shown condition iv:  x, v, and a are all sinusoidal functions of time: 

 

( )

2

x(t) A cos t

v(t) A sin( t )

a(t) A cos( t )

=  + 

= −   + 

= −   + 

 

The period T is given by 
k 2 m

T 2
m T k


 = =  =  .  We see that T does not 

depend on the amplitude A (condition iii). 

 

Let's first try to make sense of k / m = :  big  means small T which means rapid 

oscillations.  According to the formula, we get a big  when k is big and m is small.  This 
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simple harmonic motion: periodic motion and simple harmonic motion 
makes sense: a big k (stiff spring) and a small mass m will indeed produce very rapid 

oscillations and a big .  

 

 

A closer look at x(t) = A cos(t+)  

 

Let's review the sine and cosine functions and their relation to the unit circle.  We often 

define the sine and cosine functions this way: 

 

adj
cos

hyp
 =  

 

opp
sin

hyp
 =  

 

This way of defining sine and cosine is correct but incomplete.  It is hard to see from this 

definition how to get the sine or cosine of an angle greater than 90o. 

 

A more complete way of defining sine and cosine, a 

way that gives the value of the sine and cosine for 

any angle, is this: Draw a unit circle (a circle of 

radius r = 1) centered on the origin of the x-y axes 

as shown: 

 

Define sine and cosine as 

adj x
cos x

hyp 1
 = = =  

opp y
sin y

hyp 1
 = = =  

 

This way of defining sin and cos allows us to compute the sin or cos of any angle at all.   

 

For instance, suppose the angle is  = 210o.  Then the 

diagram looks like this:   

 

The point on the unit circle is in the third quadrant, where 

both x and y are negative.  So both cos = x and 

sin = y are negative 

 

 

 

 

 

 

opposite 

adjacent 

hypotenuse 

x 

y 

 

r = 

1 

point (x, y) 

x 

y 

 

1 

point (x, y) 
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simple harmonic motion: periodic motion and simple harmonic motion 
For any angle , even angles bigger than 360o (more than once around the circle), we can 

always compute sin and cos.  When we plot sin and cos vs angle , we get functions that 

oscillate between +1 and –1 like so: 

 

 
 

We will almost always measure angle  in radians. Once around the circle is 2 radians, 

so sine and cosine functions are periodic and repeat every time  increases by 2 rad.  

The sine and cosine functions have exactly the same shape, except that sin is shifted to 

the right compared to cos by  =  .  Both these functions are called sinusoidal 

functions. 

 

 
The function cos( + ) can be made to be anything in between cos() and sin() by 

adjusting the size of the phase  between 0 and −2.   

 

( )cos , ( 0) sin cos , / 2
2

 
  = →  =  −  = − 

 
 

 

The function cos(t + ) oscillates between +1 and −1, so the function Acos(t + ) 

oscillates between +A and −A. 

 
 

Why 
2

T


 = ?    The function f() = cos is periodic with period  = .  Since 

 =t+ and  is some constant, we have  = t. One complete cycle of the cosine 

function corresponds to  =  and t = T,  (T is the period).  So we have 2 =  T or 

 =t 

Acos (t) 

+A 

–A 

 = 

cos  

 

sin  

 =   

+1 

–1 

cos  

 

sin  

 

 = 3600 = 2 rad 
+1 

–1 
 = 2 

–1 

+1 
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simple harmonic motion: periodic motion and simple harmonic motion 
2

T


 = .   Here is another way to see it: 

t
cos( t) cos 2

T

 
 =  

 
is periodic with period t 

= T.  To see this, notice that when t increases by T, the fraction t/T increases by 1 and the 

fraction 2t/T increases by 2.   

 

 
 

Now back to simple harmonic motion.  Instead of a circle of radius 1, we have a circle of 

radius A (where A is the amplitude of the Simple Harmonic Motion). 

 

SHM and Conservation of Energy: 

 

Recall PEelastic = (1/2) k x2 = work done to compress or stretch a spring by distance x. 

 

If there is no friction, then the total energy Etot = KE + PE = constant during oscillation.  

The value of Etot depends on initial conditions – where the mass is and how fast it is 

moving initially.  But once the mass is set in motion, Etot stays constant (assuming no 

dissipation.) 

 

At any position x, speed v is such that    2 21 1
tot2 2

m v k x E+ =   .   

 

When |x| = A, then v = 0, and all the energy is PE: 
2

tot

0 (1/ 2)kA

KE PE E+ =   

So total energy 21
tot 2

E k A=  

 

When x = 0, v = vmax, and all the energy is KE: 
2

max

tot

0(1/ 2)mv

KE PE E+ =  

So, total energy 21
tot max2

E m v= .  

 

t 

Acos (t) 

+A 

–A 

t = T 

t 

Acos (t) 

+A 

–A 

(t) = 2 
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simple harmonic motion: periodic motion and simple harmonic motion 

 
 

So, we can relate vmax to amplitude A :   PEmax = KEmax = Etot     2 21 1
max2 2

k A m v=  

 

max

k
v A

m
=  

 

Example Problem:  A mass m on a spring with spring constant k is oscillating with 

amplitude A.  Derive a general formula for the speed v of the mass when its position is x. 

Answer: 

2
k x

v(x) A 1
m A

 
= −  

 
 

 

 

Be sure you understand these things: 

 

 

 

 

 

 

 

 

 

 

 

 

x   

y   

Etot = 

KE + PE 

(1/2)kx2 

PE   

+A −A 

KE   

range of motion 

|x| = A 

 v = 0 

PE = max 

KE = min 

|F| = max 

|a| = max 

x  =  0 

|v| = max 

PE = min 

KE = max 

|F| = 0 

|a| = 0 
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simple harmonic motion: periodic motion and simple harmonic motion 
Pendulum Motion 

 

A simple pendulum consists of a small mass m suspended at the end of a massless string 

of length L.  A pendulum executes SHM,  if the amplitude is not too large. 

 
 

 

The restoring force is the component of the force along the direction of motion: 

x
restoring force  = mgsin mg mg

L
−   −  = −  

Claim: sin (rads)   when  is small.  
h

sin
L

 =  

s

R
 =  

 

If  small, then h  s, and L  R, 

so sin    . 

 

 

Try it on your calculator:   = 5o = 0.087266..  rad,   sin  = 0.087156.. 

 

restore

mg
F x

L

 
= −  

 
   is exactly like Hooke's Law  

restoreF k x= − , except we have 

replaced the constant k with another constant (mg / L).  The math is exactly the same as 

with a mass on a spring; all results are the same, except we replace k with (mg/L). 

 

( )
spring pend

m m L
T 2 T 2 2

k mg / L g
=   =  =   

 

Notice that the period is independent of the amplitude; the period depends only on length 

L and acceleration of gravity.  (But this is true only if  is not too large.) 

L 

x 

 

 = x / L  (rads) 

Forces on mass : 

 

FT = tension 

mg 

mg cos 

mg sin 

y 
x 

R 

 

L 

s h 
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simple harmonic motion: periodic motion and simple harmonic motion 
Appendix: SHM and circular motion 

 

There is an exact analogy between SHM and circular motion.  Consider a particle 

moving with constant speed v around the rim of a circle of radius A.   

The x-component of the position of the particle has exactly the same mathematical form 

as the motion of a mass on a spring executing SHM with amplitude A. 

 

angular velocity 
d

const
d t


 = =     

t =     so 

 

x A cos A cos t=  =     

This same formula also describes the sinusoidal motion 

of a mass on a spring. 

 

 

 

That the same formula applies for two different situations (mass on a spring & circular 

motion) is no accident.  The two situations have the same solution because they both 

obey the same equation.  As Feynman said, "The same equations have the same 

solutions".  The equation of SHM is 
2

2

2

d x
x

d t
= −    .  We now show that a particle in 

circular motion obeys this same SHM equation. 

 

Recall that for circular motion with angular speed , the acceleration of a the particle is 

toward the center and has magnitude  
2v

| a |
R

= .  Since v =  R , we can rewrite this as  

( )
2

2
R

| a | R
R


= =   

 

Let's set the origin at the center of 

the circle so the position vector R 

is along the radius. Notice that the 

acceleration vector a is always in 

the direction opposite the position 

vector R .  Since 2| a | R=   , 

the vectors a and R are related by 
2a R= −  .  The x-component of 

this vector equation is: 2

x xa R= −  .  If we write Rx = x , then we have   

2
2

2

d x
x

d t
= −  , which is the SHM equation.  Done. 

 

 

A 

+A –A 

0 

v 

 

x 

a 

+A –A 

0 

v 

t 

x 

R 
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simple harmonic motion: periodic motion and simple harmonic motion 
Solved problems 

Example 1 

A mass of 0.5 kg oscillates on the end of a spring on a horizontal surface with negligible 

friction according to the equation ( )tAx cos= . The graph of F vs. x for this motion is 

shown below. 

 

 
The last data point corresponds to the maximum displacement of the mass.  

Determine the  

(a) angular frequency ω of the oscillation, 

(b) frequency f of oscillation, 

(c) amplitude of oscillation, 

(d) displacement from equilibrium position (x = 0) at a time of 2 s. 

 

 

Solution: 

(a) We know that the spring constant k = 50 N/m from when we looked at this graph 

earlier. So, 

s

rad

kg

mN

m

k
10

5.0

/50
===  

(b) Hz
srad

f 6.1
2

/10

2
===




 

(c) The amplitude corresponds to the last displacement on the graph, A = 1.2 m. 

(d) ( ) ( ) ( )( )  mssradmtAx 5.02/10cos2.1cos ===   

 

 

 

 

 

 

 

 

 

 

 



Week -3- 

 

 11 

simple harmonic motion: periodic motion and simple harmonic motion 
Example 2 

A spring of constant k = 100 N/m hangs at its natural length from a fixed stand. A mass 

of 3 kg is hung on the end of the spring, and slowly let down until the spring and mass 

hang at their new equilibrium position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) Find the value of the quantity x in the figure above. The spring is now pulled down an 

additional distance x and released from rest.  

(b) What is the potential energy in the spring at this distance? 

(c) What is the speed of the mass as it passes the equilibrium position? 

(d) How high above the point of release will the mass rise? 

(e) What is the period of oscillation for the mass? 

 

Solution: 

(a) As it hangs in equilibrium, the upward spring force must be equal and opposite to the 

downward weight of the block. 

 

( )( )
m

mN

smkg

k

mg
x

mgkx

mgFs

3.0
/100

/103 2

===

=

=

 

 

 
(b) The potential energy in the spring is related to the displacement from equilibrium 

position by the equation 

( )( ) JmmNkxU 5.43.0/100
2

1

2

1 22 ===  

x 

mg 

Fs 
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simple harmonic motion: periodic motion and simple harmonic motion 
(c) Since energy is conserved during the oscillation of the mass, the kinetic energy of the 

mass as it passes through the equilibrium position is equal to the potential energy at the 

amplitude. Thus, 

 

( )
sm

kg

J

m

U
v

mvUK

/7.1
3

5.422

2

1 2

===

==

 

(d) Since the amplitude of the oscillation is 0.3 m, it will rise to 0.3 m above the 

equilibrium position.  

(e) s
mN

kg

k

m
T 1.1

/100

3
22 ===   

Example 3 

A pendulum of mass 0.4 kg and length 0.6 m is pulled back and released from and angle 

of 10˚ to the vertical.  

 

(a) What is the potential energy of the mass at the instant it is released. Choose potential 

energy to be zero at the bottom of the swing.  

(b) What is the speed of the mass as it passes its lowest point? 

 

This same pendulum is taken to another planet where its period is 1.0 second.  

(c) What is the acceleration due to gravity on this planet? 

 

Solution 

(a) First we must find the height above the lowest point in the swing at the instant the 

pendulum is released. 

 

Recall from chapter 1 of this study guide 

that cosLLh −= . 

Then  

( )

( )( )( ) JmmsmkgU

LLmgU

4.010cos6.06.0/104.0

cos

2 =−=

−= 
 

 

(b) Conservation of energy: 

( )
sm

kg

J

m

U
v

mvKU

/4.1
4.0

4.022

2

1 2

maxmax

===

==

 

 

 

 

 

 

 

h 

10˚ 
L 

L 
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simple harmonic motion: periodic motion and simple harmonic motion 
(c)  

 
( )

( ) 22

2

2

2

7.23
0.1

6.044

2

s

m

s

m

T

L
g

g

L
T

===

=




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simple harmonic motion: periodic motion and simple harmonic motion 
REVIEW QUESTIONS 

For each of the multiple-choice questions below, choose the best answer.  

Unless otherwise noted, use g = 10 m/s2 and neglect air resistance.  

 
1. According to Hooke’s law for an ideal 

spring, doubling the stretch distance will  

(A) double the velocity of the mass. 

(B) double the force that the spring 

exerts on the mass. 

(C) quadruple the force the spring exerts 

on the mass. 

(D) double the period. 

(E) double the frequency. 

 

Questions 2 – 3: Consider the force vs 

displacement graph shown for an ideal 

spring.  

 

 
 

2. The work done in stretching the spring 

from 0.1 m to 0.5 m is  

(A) 1 J 

(B) 4 J 

(C) 6 J 

(D) 12 J 

(E) 24 J 

 

3. The spring constant k is equal to 

(A) 5 N/m 

(B) 10 N/m 

(C) 20 N/m 

(D) 25 N/m 

(E) 50 N/m 

 

 

Questions 4 – 6: 

A pendulum of length L swings with an 

amplitude θ and a frequency f  as 

shown above.  

 

4. If the amplitude is increased and the 

pendulum is released from a greater 

angle,  

(A) the period will decrease. 

(B) the period will increase. 

(C) the period will not change. 

(D) the frequency will increase. 

(E) the frequency will decrease. 

 

5. If the mass and the length of the 

pendulum are both doubled, the 

frequency of vibration will be 

(A) f 

(B) 2f 

(C) 4f 

(D) ½ f 

(E) ¼ f 

6. Which of the following statements is 

true about the swinging pendulum? 

 

I. The greatest restoring force and the  

    greatest velocity occur at the same  

    point. 

II. The greatest restoring force and the  

    greatest acceleration occur at the same  

    point. 

III. The greatest acceleration and the  

      greatest velocity occur at the same  

      point. 

 

(A) I only 

(B) I and II only 

(C) II only 

(D) I and III only 

(E) I, II, and III 

 

 

 

θ 

L 
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simple harmonic motion: periodic motion and simple harmonic motion 

Questions 7 – 9: 

The equation which describes the motion 

of a mass oscillating on an ideal spring is  

 x = 6 cos 3t 

where x is in centimeters and t is in 

seconds.  

 

7. The amplitude of the harmonic motion 

is  

(A) 3 cm 

(B) 6 cm 

(C) 9 cm 

(D) 18 cm 

(E) 30 cm 

 

8. The period of vibration for this mass 

on a spring is most nearly 

(A) 1 s 

(B) 2 s 

(C) 3 s 

(D) 6 s 

(E) 9 s 

 

9. The total distance traveled by the 

mass during one full oscillation is  

(A) 3 cm 

(B) 6 cm 

(C) 12 cm 

(D) 18 cm 

(E) 24 cm 

 

10. A mass vibrates on an ideal spring as 

shown above. The total energy of the 

spring is 100 J. What is the kinetic 

energy of the mass at point P, halfway 

between the equilibrium point and the 

amplitude? 

(A) 25 J 

(B) 50 J 

(C) 75 J 

(D) 100 J 

(E) 200 J

  P 

Equilibriu

m 
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ANSWERS AND EXPLANATIONS TO REVIEW QUESTIONS 

 

Multiple Choice 

 

1. B 

Since the force is proportional to the stretch distance, the force would double if the 

stretch distance doubled. 

 

2. C 

The work done by the spring from 0.1 m to 0.5 m is equal to the area under the graph 

between those two points.  

( )( ) ( )( ) JmNmNA 64.054.020
2

1
=+=  

3. E 

k = slope = 
m

N

m

N
50

5.0

25
=  

4. C 

The period of a pendulum does not depend on the amplitude of swing for small swings. 

 

5. D 

L

g
f

2

1
= . Thus , 

L
f

1
 , and 

L
f

4

1

2

1
  

 

6. C 

Newton’s second law states that the acceleration is proportional to the force. The 

restoring force and the acceleration are the greatest at the amplitude of swing. 

 

7. B 

The amplitude is the the constant which appears in front of the cosine of the angle. 

 

8. B 

( )
sT 2

3

322
==




 

 

9. E 

The total distance moved during one full oscillation would be four times the amplitude of 

the motion: 4(6 cm) = 24 cm. 

 

10. B 

At point B, the mass is halfway between the equilibrium position, where the kinetic 

energy is 100 J, and the amplitude, where the kinetic energy is zero. Thus, the kinetic 

energy at point B is 50 J. 
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QUICK REFERENCE 

 

Important Terms 
 

amplitude   

maximum displacement from equilibrium position; the distance from the midpoint 

of a wave to its crest or trough. 

equilibrium position   

the position about which an object in harmonic motion oscillates; the center of 

vibration 

frequency   

the number of vibrations per unit of time 

Hooke’s law 

law that states that the restoring force applied by a spring is proportional to the 

displacement of the spring and opposite in direction 

ideal spring 

any spring that obeys Hooke’s law and does not dissipate energy within the 

spring.  

mechanical resonance    

condition in which natural oscillation frequency equals frequency of  a driving 

force 

period   

the time for one complete cycle of oscillation 

periodic motion   

motion that repeats itself at regular intervals of time 

restoring force   

the force acting on an oscillating object which is proportional to the displacement 

and always points toward the equilibrium position. 
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simple harmonic motion 

regular, repeated, friction-free motion in which the restoring force has the 

mathematical form F = - kx.  

 

Equations and Symbols 
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where 

 

Fs = the restoring force of the spring 

k = spring constant  

x = displacement from equilibrium  

       position 

PEelastic = elastic (spring) potential  

             energy (denoted Us on the AP  

             exam) 

A = amplitude 

ω = angular frequency 

T = period 

f = frequency 

m = mass  

TP = period of a pendulum 

TS = period of a mass on a spring 

g = acceleration due to gravity 
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