Week -3-

simple harmonic motion: periodic motion and simple harmonic motion

Simple Harmonic Motion
(Periodic Motion and Simple Harmonic motion)

A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special
kind of oscillatory motion called Simple Harmonic Motion (SHM).

SHM occurs whenever:
i. there is a restoring force proportional to the displacement from equilibrium: F oc —x
ii. the potential energy is proportional to the square of the displacement: PE oc X2
iii. the period T or frequency f =1/ T is independent of the amplitude of the motion.

iv. the position X, the velocity v, and the acceleration a are all sinusoidal in time.
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(Sinusoidal means sine, cosine, or anything in between.)
As we will see, any one of these four properties guarantees the other three. If one of

these 4 things is true, then the oscillator is a simple harmonic oscillator and all 4 things
must be true.

Not every kind of oscillation is SHM. For instance, a perfectly elastic ball bouncing up
and down on a floor: the ball's position (height) is oscillating up and down, but none of
the 4 conditions above is satisfied, so this is not an example of SHM.

A mass on a spring is the simplest kind of Simple Harmonic Oscillator.

|
K | <— Frestore Hooke's Law: Fspring = — K X
—60000 M
X (+) sign because direction of Fspring IS

I opposite to the direction of displacement
—66666\—- relaxed: x = 0 vector x (bold font indicates vector)

|
Frestorql k = spring constant = stiffness,

= units [k] =N /m

< Big k = stiff spring
I > X
Definition: amplitude A = [Xmax| = [Xmin|. | 0 mm




Week -3-
simple harmonic motion: periodic motion and simple harmonic motion

Mass oscillates between extreme positions X = +A and X = -A

Notice that Hooke's Law (F = — kx) is condition i : restoring force proportional to the
displacement from equilibrium. We showed previously (Work and Energy Chapter) that
for a spring obeying Hooke's Law, the potential energy is U = (1/2)kx? , which is
condition ii. Also, in the chapter on Conservation of Energy, we showed that F =
—dU/dx, from which it follows that condition ii implies condition i. Thus, Hooke's Law
and quadratic PE (U o x?) are equivalent.

We now show that Hooke's Law guarantees conditions iii (period independent of
amplitude) and iv (sinusoidal motion).

We begin by deriving the differential equation for SHM. A differential equation is
simply an equation containing a derivative. Since the motion is 1D, we can drop the
vector arrows and use sign to indicate direction.

F.=ma and F_ =—-kx = ma=-kx

d*x K
a=dv/dt=d’x/dt* = — =-—x

dt m
The constants k and m and both positive, so the k/m is always positive, always. For
notational convenience, we write k/m = o°. (The square on the « reminds us that ? is

always positive.) The differential equation becomes
d*x )
i = -0 X (equation of SHM)

This is the differential equation for SHM. We seek a solution x = x(t) to this equation, a
function x = x(t) whose second time derivative is the function x(t) multiplied by a
negative constant (—»? = —k/m). The way you solve differential equations is the same
way you solve integrals: you guess the solution and then check that the solution works.

Based on observation, we guess a sinusoidal solution:| X(t) = ACOS(cot + (p) ,

/ k
where A, ¢ are any constants and (as we'll show)| o = ,| — .
m

A = amplitude: x oscillates between +A and -A
¢ = phase constant (more on this later)

Danger: ot and ¢ have units of radians (not degrees). So set your calculators to radians
when using this formula.

Just as with circular motion, the angular frequency ® for SHM is related to the period by
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o simple harmonic motion: periodic motion and simple harmonic motion

T

o=2nf , T = period.

(What does SHM have to do with circular motion? We'll see later.)

Let's check that x(t) = Acos(wt+¢) is a solution of the SHM equation.

Taking the first derivative dx/dt , we get v(t) = c;—): =-Aowsin(ot+9).

_ Ecos(cot+(p) = Md—e (0 =ot+¢)
Here, we've used the Chain Rule: dt do dt
=-sin0-o = —osin(ot + )
Taking a second derivative, we get
d°x dv d .

a(t) = — = — = —(-Aosin(ot+9)) = —Aw’cos(ot +
® dt? dt dt( osin(ot+¢)) 0" cos(ot +¢)

2

3T)2( = —w’[Acos(ot +¢)]

d?x )

— = —0°X

dt

This is the SHM equation, with »® = S , o= ,/ K
m m

We have shown that our assumed solution is indeed a solution of the SHM equation. (I
leave to the mathematicians to show that this solution is unique. Physicists seldom worry
about that kind of thing, since we know that nature usually provides only one solution for
physical systems, such as masses on springs.)

We have also shown condition iv: X, v, and a are all sinusoidal functions of time:

x(t) = Acos(wt+o)
V(t) = —Aosin(ot+o)
a(t) = —Aw’cos(ot+ o)

The period T is given by o = ‘/5 = % = T= 27:,/% . We see that T does not
m

depend on the amplitude A (condition iii).

Let's first try to make sense of o = ./ k/m: big ® means small T which means rapid
oscillations. According to the formula, we get a big ® when k is big and m is small. This
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makes sense: a big k (stiff spring) and TS IAASL R TR Ao SEGROURR A RmP!e harmonic motion

oscillations and a big .

A closer look at x(t) = A cos(ot+o)

Let's review the sine and cosine functions and their relation to the unit circle. We often

define the sine and cosine functions this way:

cos0 = ad)

hypotenuse ~ hvo
P opposite hyp
0 . opp
adjacent sin® = h_yp

This way of defining sine and cosine is correct but incomplete. It is hard to see from this
definition how to get the sine or cosine of an angle greater than 90°.

A more complete way of defining sine and cosine, a
way that gives the value of the sine and cosine for
any angle, is this: Draw a unit circle (a circle of
radius r = 1) centered on the origin of the x-y axes
as shown:

A 1 t ’
/pOln x,y)

DO T

Define sine and cosine as

Ccos0 = a—dj =X
hyp 1

Sino = o _ Y _
1

This way of defining sin and cos allows us to compute the sin or cos of any angle at all.

For instance, suppose the angle is 6 = 210°. Then the
diagram looks like this:

The point on the unit circle is in the third quadrant, where
both x and y are negative. So both cos6 = x and
sin® =y are negative

A

N

v
£

point (X, y)
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For any angle 6, even angles bigger tﬁ%@%éﬁ%’% ha r?t Ace’ 5' ddct Oéll?(r:ll O\l/vse' Cgle o
always compute sin and cos. When we plot sin and cos vs angle 06, we get functions that
oscillate between +1 and -1 like so:

cos 0 sin 0

+lﬁi /{9 360° = 2 rad +1%
NivAVAVANENAvVAvAvA

0=2n

We will almost always measure angle 6 in radians. Once around the circle is 2x radians,
so sine and cosine functions are periodic and repeat every time 0 increases by 2= rad.
The sine and cosine functions have exactly the same shape, except that sin is shifted to
the right compared to cos by A6 = /2 . Both these functions are called sinusoidal
functions.

AO =1/2

VINNENTAN
i \,/, NN

COS 0 Sln 0

The function cos(0 + ¢) can be made to be anything in between cos(6) and sin(6) by
adjusting the size of the phase ¢ between 0 and —27x.

cosO, (p=0) — sinezcos(e—g) (p=-n/2)

The function cos(wt + ¢) oscillates between +1 and —1, so the function Acos(wt + @)
oscillates between +A and —A.

Acos (mt) A8 =2
1,

NAWANANENS
NAVERVIRV.

Why o = %? The function f(6) = cos0 is periodic with period A6 =2xr. Since

0 =ot+e, and ¢ is some constant, we have AO =» At. One complete cycle of the cosine
function corresponds to AO =2 and At =T, (T is the period). Sowe have2n = T or
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simple harmonic otiop' periodic motion and simple harmonic motion
21 . i . g .
O = T Here is another way to see it: cos(wt) = coerZn ?j IS periodic with period At

=T. To see this, notice that when t increases by T, the fraction t/T increases by 1 and the
fraction 2xt/T increases by 2.

Acos (mt) Acos (mt)

NAWATATERE A WANANEY
NAV VRV N AVIAVARY.

«—> «—>
At = A(wt) =27

Now back to simple harmonic motion. Instead of a circle of radius 1, we have a circle of
radius A (where A is the amplitude of the Simple Harmonic Motion).

SHM and Conservation of Energy:

Recall PEeasic = (1/2) k x? = work done to compress or stretch a spring by distance x.

If there is no friction, then the total energy Etwt = KE + PE = constant during oscillation.
The value of Ett depends on initial conditions — where the mass is and how fast it is

moving initially. But once the mass is set in motion, E stays constant (assuming no
dissipation.)

At any position x, speed v is such that| imv* + ikx* = E, |.

I
m

When |x| = A, then v =0, and all the energy is PE: KE + PE

0 (1/2)kA?

tot

So total energy E,, = $+kA?

tot

When x =0, v = Vmax, and all the energy isKE:  KE + PE = E,,
(1/2)MV gy 0

2
max *

So, total energy E,, = $mv
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simple harmonic motion: periodic motion and simple harmonic motion

(1/2)kx?

myv =

max

N

Example Problem: A mass m on a spring with spring constant k is oscillating with
amplitude A. Derive a general formula for the speed v of the mass when its position is x.

Answer: v(x) = A\/E fl—(il
m A

Be sure you understand these things:

range of motion

>
y N
Ly
X =
|X|_‘6A‘ [v| = max
I;/E_— PE = min
KE=mn  KE=max
- F|=0
|F| = max Ia||: 0
|a] = max
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Pendulum Motion simple harmonic motion: periodic motion and simple harmonic motion

A simple pendulum consists of a small mass m suspended at the end of a massless string
of length L. A pendulum executes SHM, if the amplitude is not too large.

Forces on mass : y

Fr = tension X/ X

mg sin®

/;// e\\\mg coso
\

<

X
0=x/L (rads)

mg

The restoring force is the component of the force along the direction of motion:

restoring force = —mgsin® = —mgo6 = —mg%

Claim: sin® = 6 (rads) when 6 is small. sin6 = %

S
L 0 =—
R
S\[ Ln
If 6 small, thenh=s,and L » R,
0 sosSin0=0.
R

Try it on your calculator: 6 =5° =0.087266.. rad, sin 6 =0.087156..

mg

Fesore = —(T)x is exactly like Hooke's Law F = —k x, except we have

restore

replaced the constant k with another constant (mg / L). The math is exactly the same as
with a mass on a spring; all results are the same, except we replace k with (mg/L).

m m L
T =2n]— = T, =2 / -2 /_
spring T k pend e (mg / L) T g

Notice that the period is independent of the amplitude; the period depends only on length
L and acceleration of gravity. (But this is true only if 0 is not too large.)
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Appendix: SHM and circular motio%'mple harmonic motion: periodic motion and simple harmonic motion

There is an exact analogy between SHM and circular motion. Consider a particle
moving with constant speed v around the rim of a circle of radius A.

The x-component of the position of the particle has exactly the same mathematical form
as the motion of a mass on a spring executing SHM with amplitude A.

Q"4 d
. 0
angular velocity o = Fr const =
0 =mwt so
X = AcosO = A coswmt
This same formula also describes the sinusoidal motion
“A +A of a mass on a spring.

That the same formula applies for two different situations (mass on a spring & circular
motion) is no accident. The two situations have the same solution because they both

obey the same equation. As Feynman said, "The same equations have the same

d’x )

solutions”. The equation of SHM is Frol —o° X . We now show that a particle in

circular motion obeys this same SHM equation.

Recall that for circular motion with angular speed o, the acceleration of a the particle is
2

: _ v . N
toward the center and has magnitude |a| = e Since v=w R, we can rewrite this as

|a| = = oR Y%

Let's set the origin at the center of
the circle so the position vector R
is along the radius. Notice that the
acceleration vector a is always in

the direction opposite the position

vector R . Since |a| = o*|R| , —A , +A
I~ I =l

the vectors a and R are related by 0

a = -’ R. The x-component of

this vector equation is: a, = —o*R, . If we write Rx = x , then we have

d®x

—— = —’ X, which is the SHM equation. Done.
dt’
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S%W/Bl? &a&mﬂi]% motion: periodic motion and simple harmonic motion

Example 1
A mass of 0.5 kg oscillates on the end of a spring on a horizontal surface with negligible
friction according to the equation x = Acos(a)t). The graph of F vs. x for this motion is

shown below.

Force vs. displacement

. e

i}

0o 0s 10
displacement (meters)

The last data point corresponds to the maximum displacement of the mass.
Determine the

(a) angular frequency w of the oscillation,

(b) frequency f of oscillation,

(c) amplitude of oscillation,

(d) displacement from equilibrium position (x = 0) at a time of 2 s.

Solution:
(a) We know that the spring constant k = 50 N/m from when we looked at this graph
earlier. So,

\/? 50N /m rad
0= |—= =10
m 0.5kg S

() =2 20madls g,
2r 2

(c) The amplitude corresponds to the last displacement on the graph, A=1.2 m.
(d) x = Acos(awt)=(1.2m)cos[(10rad /s)2s)]=0.5m

10
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Example 2 simple harmonic motion: periodic motion and simple harmonic motion
A spring of constant k = 100 N/m hangs at its natural length from a fixed stand. A mass
of 3 kg is hung on the end of the spring, and slowly let down until the spring and mass
hang at their new equilibrium position.

PR
RN
SR A
R
ot B

(a) Find the value of the quantity x in the figure above. The spring is now pulled down an
additional distance x and released from rest.

(b) What is the potential energy in the spring at this distance?

(c) What is the speed of the mass as it passes the equilibrium position?

(d) How high above the point of release will the mass rise?

(e) What is the period of oscillation for the mass?

Solution:
(a) As it hangs in equilibrium, the upward spring force must be equal and opposite to the
downward weight of the block. F.
F, =mg T
kx = mg
2

Mg _ (3kg)(10m/s )=O.3m

k 100 N/m l

ma

(b) The potential energy in the spring is related to the displacement from equilibrium
position by the equation

U =%kx2 =%(100N /m)0.3m)’ =4.5]

11
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(c) Since energy is conserved during ?Hp%lsecn%ﬂbcf%cf %%ti%ﬁéé?%ﬂQ‘?JﬁnE‘EPcth&? SFHPJe harmenic motion

mass as it passes through the equilibrium position is equal to the potential energy at the
amplitude. Thus,

K=U :imv2
2

v:\/z—U :\/2(4'5‘]) =1.7m/s

m 3kg

(d) Since the amplitude of the oscillation is 0.3 m, it will rise to 0.3 m above the
equilibrium position.

©T =2;z\/E= or |—2K9 g1
k 100N /m

Example 3
A pendulum of mass 0.4 kg and length 0.6 m is pulled back and released from and angle
of 10° to the vertical.

(a) What is the potential energy of the mass at the instant it is released. Choose potential
energy to be zero at the bottom of the swing.
(b) What is the speed of the mass as it passes its lowest point?

This same pendulum is taken to another planet where its period is 1.0 second.
(c) What is the acceleration due to gravity on this planet?

Solution
(a) First we must find the height above the lowest point in the swing at the instant the
pendulum is released.

Recall from chapter 1 of this study guide L
that h=L—Lcosé.

Then

U =mg(L - Lcosé)

U =(0.4kg)10m/s? 0.6 m—0.6mcos10°) = 0.4 -

(b) Conservation of energy:
U =K_ = Emv2
2

max max

v:\/g :\/M =14m/s

m 0.4kg

12
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©) simple harmonic motion: periodic motion and simple harmonic motion

T:27z\/E
g

_47’L_ 47%(0.6m)
T? (1.0s)

=237
S

13
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REVIEW QUESTIONS

simple harmonic motion: periodic motion and simple harmonic motion

For each of the multiple-choice questions below, choose the best answer.
Unless otherwise noted, use g = 10 m/s? and neglect air resistance.

1. According to Hooke’s law for an ideal

spring, doubling the stretch distance will

(A) double the velocity of the mass.

(B) double the force that the spring
exerts on the mass.

(C) quadruple the force the spring exerts
on the mass.

(D) double the period.

(E) double the frequency.

Questions 2 — 3: Consider the force vs
displacement graph shown for an ideal
spring.

Force vs. displacement

orce (Newtons)

F

0.00 020 040

(0.01.17.2)

2. The work done in stretching the spring
from0.1 mto 0.5mis

(A)1J

B)41J

©61J

(D)12J

(E) 24

3. The spring constant k is equal to
(A)5N/m

(B) 10 N/m

(C) 20 N/m

(D) 25 N/m

(E) 50 N/m

14

Questions 4 — 6:

A pendulum of length L swings with an
amplitude 6 and a frequency f[1 as
shown above.

4. If the amplitude is increased and the
pendulum is released from a greater
angle,

(A) the period will decrease.

(B) the period will increase.

(C) the period will not change.

(D) the frequency will increase.

(E) the frequency will decrease.

5. If the mass and the length of the
pendulum are both doubled, the
frequency of vibration will be

(A)f

(B) 2f

(C) 4f

(D) v f

(E) Yaf

6. Which of the following statements is
true about the swinging pendulum?

I. The greatest restoring force and the
greatest velocity occur at the same
point.

Il. The greatest restoring force and the
greatest acceleration occur at the same
point.

[11. The greatest acceleration and the

greatest velocity occur at the same
point.

(A) lonly

(B) I'and 11 only
(C) Honly

(D) I and 111 only
(E) I, 11, and HI
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simple harmonic motion: periodic motion and simple harmonic motion
Questions 7 — 9:
The equation which describes the motion
of a mass oscillating on an ideal spring is

X =6 cos 3t
where X is in centimeters and tis in
seconds.

7. The amplitude of the harmonic motion
is

(A)3cm

(B) 6 cm

(©)9cm

(D) 18 cm

(E) 30 cm

8. The period of vibration for this mass
on a spring is most nearly

(A)1s

B)2s

(C)3s

(D)6s

(E)9s

9. The total distance traveled by the
mass during one full oscillation is
(A)3cm

(B) 6 cm

(C)12cm

(D) 18 cm

(E) 24 cm

10. A mass vibrates on an ideal spring as p
shown above. The total energy of the AN~ =
spring is 100 J. What is the kinetic N T
energy of the mass at point P, halfway

between the equilibrium point and the Ernilihrin
amplitude?

(A)25J

(B)50J

(C)751J

(D) 1001

(E) 200

15



ANSWERS AND EXPLANATIONS TO REVIEW QUESTIONS

Multiple Choice

1.B
Since the force is proportional to the stretch distance, the force would double if the
stretch distance doubled.

2.C
The work done by the spring from 0.1 m to 0.5 m is equal to the area under the graph
between those two points.

:%(20N)(0.4m)+(5N)(0.4m): 6J

3.E
k = slope = BN 50ﬁ
0.5m m

4.C
The period of a pendulum does not depend on the amplitude of swing for small swings.
5D
f:i g.Thus, foc\/I,and 1f oc L

27 VL L 2 4L
6.C

Newton’s second law states that the acceleration is proportional to the force. The
restoring force and the acceleration are the greatest at the amplitude of swing.

7.B
The amplitude is the the constant which appears in front of the cosine of the angle.
8.B
727 (_) _
0] 3
9.E

The total distance moved during one full oscillation would be four times the amplitude of
the motion: 4(6 cm) = 24 cm.

10.B

At point B, the mass is halfway between the equilibrium position, where the kinetic
energy is 100 J, and the amplitude, where the kinetic energy is zero. Thus, the Kinetic
energy at point B is 50 J.

17



QUICK REFERENCE

Important Terms

amplitude
maximum displacement from equilibrium position; the distance from the midpoint
of a wave to its crest or trough.

equilibrium position
the position about which an object in harmonic motion oscillates; the center of
vibration

frequency
the number of vibrations per unit of time

Hooke’s law
law that states that the restoring force applied by a spring is proportional to the
displacement of the spring and opposite in direction

ideal spring
any spring that obeys Hooke’s law and does not dissipate energy within the
spring.

mechanical resonance
condition in which natural oscillation frequency equals frequency of a driving
force

period
the time for one complete cycle of oscillation

periodic motion
motion that repeats itself at regular intervals of time

restoring force
the force acting on an oscillating object which is proportional to the displacement
and always points toward the equilibrium position.

17



simple harmonic motion
regular, repeated, friction-free motion in which the restoring force has the
mathematical form F = - kx.

Equations and Symbols

F, =—kx
I:)Eelastic = l kXZ
2
X = Acos wt
= 2—” = 2xf
T
Ts = 27r\/E
k
I
Tp =27 |—
g
;.1
f
where

Fs = the restoring force of the spring
k = spring constant
x = displacement from equilibrium
position
PEelastic = elastic (spring) potential
energy (denoted Uson the AP

exam)
A = amplitude
o = angular frequency
T = period
f = frequency
m = mass

Tp = period of a pendulum
Ts = period of a mass on a spring
g = acceleration due to gravity

17
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